Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.894
Filtrar
1.
Front Hum Neurosci ; 18: 1356674, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562227

RESUMO

Nearly 25 years ago, Dr. Patricia Goldman-Rakic published her review paper, "The 'Psychic' Neuron of the Cerebral Cortex," outlining the circuit-level dynamics, neurotransmitter systems, and behavioral correlates of pyramidal neurons in the cerebral cortex, particularly as they relate to working memory. In the decades since the release of this paper, the existing literature and our understanding of the pyramidal neuron have increased tremendously, and research is still underway to better characterize the role of the pyramidal neuron in both healthy and psychiatric disease states. In this review, we revisit Dr. Goldman-Rakic's characterization of the pyramidal neuron, focusing on the pyramidal neurons of the prefrontal cortex (PFC) and their role in working memory. Specifically, we examine the role of PFC pyramidal neurons in the intersection of working memory and social function and describe how deficits in working memory may actually underlie the pathophysiology of social dysfunction in psychiatric disease states. We briefly describe the cortico-cortical and corticothalamic connections between the PFC and non-PFC brain regions, as well the microcircuit dynamics of the pyramidal neuron and interneurons, and the role of both these macro- and microcircuits in the maintenance of the excitatory/inhibitory balance of the cerebral cortex for working memory function. Finally, we discuss the consequences to working memory when pyramidal neurons and their circuits are dysfunctional, emphasizing the resulting social deficits in psychiatric disease states with known working memory dysfunction.

2.
Netw Neurosci ; 8(1): 96-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562291

RESUMO

Transcranial magnetic stimulation (TMS) is a popular method used to investigate brain function. Stimulation over the motor cortex evokes muscle contractions known as motor evoked potentials (MEPs) and also high-frequency volleys of electrical activity measured in the cervical spinal cord. The physiological mechanisms of these experimentally derived responses remain unclear, but it is thought that the connections between circuits of excitatory and inhibitory neurons play a vital role. Using a spiking neural network model of the motor cortex, we explained the generation of waves of activity, so called 'I-waves', following cortical stimulation. The model reproduces a number of experimentally known responses including direction of TMS, increased inhibition, and changes in strength. Using populations of thousands of neurons in a model of cortical circuitry we showed that the cortex generated transient oscillatory responses without any tuning, and that neuron parameters such as refractory period and delays influenced the pattern and timing of those oscillations. By comparing our network with simpler, previously proposed circuits, we explored the contributions of specific connections and found that recurrent inhibitory connections are vital in producing later waves that significantly impact the production of motor evoked potentials in downstream muscles (Thickbroom, 2011). This model builds on previous work to increase our understanding of how complex circuitry of the cortex is involved in the generation of I-waves.

3.
Gen Psychiatr ; 37(2): e101173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562406

RESUMO

Background: Postoperative sleep disturbance (PSD) is a common and serious postoperative complication and is associated with poor postoperative outcomes. Aims: This study aimed to investigate the effect of transcranial direct current stimulation (tDCS) on PSD in older patients undergoing lower limb major arthroplasty. Methods: In this prospective, double-blind, pilot, randomised, sham-controlled trial, patients 65 years and over undergoing lower limb major arthroplasty were randomly assigned to receive active tDCS (a-tDCS) or sham tDCS (s-tDCS). The primary outcomes were the objective sleep measures on postoperative nights (N) 1 and N2. Results: 116 inpatients were assessed for eligibility, and a total of 92 patients were enrolled; 47 received a-tDCS and 45 received s-tDCS. tDCS improved PSD by altering the following sleep measures in the a-tDCS and s-tDCS groups; the respective comparisons were as follows: the promotion of rapid eye movement (REM) sleep time on N1 (64.5 (33.5-105.5) vs 19.0 (0.0, 45.0) min, F=20.10, p<0.001) and N2 (75.0 (36.0-120.8) vs 30.0 (1.3-59.3) min, F=12.55, p<0.001); the total sleep time on N1 (506.0 (408.0-561.0) vs 392.0 (243.0-483.5) min, F=14.13, p<0.001) and N2 (488.5 (455.5-548.5) vs 346.0 (286.5-517.5) min, F=7.36, p=0.007); the deep sleep time on N1 (130.0 (103.3-177.0) vs 42.5 (9.8-100.8) min, F=24.4, p<0.001) and N2 (103.5 (46.0-154.8) vs 57.5 (23.3-106.5) min, F=8.4, p=0.004); and the percentages of light sleep and REM sleep on N1 and N2 (p<0.05 for each). The postoperative depression and anxiety scores did not differ significantly between the two groups. No significant adverse events were reported. Conclusion: In older patients undergoing lower limb major arthroplasty, a single session of anodal tDCS over the left dorsolateral prefrontal cortex showed a potentially prophylactic effect in improving postoperative short-term objective sleep measures. However, this benefit was temporary and was not maintained over time.

4.
Eur J Neurosci ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566366

RESUMO

Neuromodulation with transcranial direct current stimulation (tDCS) can transiently alter neural activity, but its spatial precision is low. High-definition (HD) tDCS was introduced to increase spatial precision by placing additional electrodes over the scalp. Initial evaluations of HD tDCS indicated polarity-specific neurophysiological effects-similar to conventional tDCS albeit with greater spatial precision. Here, we compared the effects of cathodal tDCS or HD tDCS in a 4 × 1 configuration over prefrontal cortex (PFC) regions on behavioural outcomes in a magnitude classification task. We report results on overall performance, on the numerical distance effect as a measure of numerical processing, and on the spatial-numerical associations of response codes (SNARC) effect, which was previously affected by prefrontal tDCS. Healthy volunteers (n = 68) received sham or cathodal HD tDCS at 1 mA over the left dorsolateral prefrontal cortex (DLPFC) or the left inferior frontal gyrus (IFG). Results were compared to an identical protocol with conventional cathodal tDCS to the left PFC versus sham (n = 64). Mixed effects models showed performance gains relative to sham tDCS in all conditions after tDCS (i.e. 'offline'), whereas montages over PFC and DLPFC already showed performance gains during tDCS (i.e. 'online'). In contrast to conventional tDCS, HD tDCS did not reduce the SNARC effect. Neither condition affected numerical processing, as expected. The results suggest that HD tDCS with cathodal polarity might require further adjustments (i.e. regarding tDCS intensity) for effective modulations of cognitive-behavioural performance, which could be achieved by individualised current density in electric field modelling.

5.
J Neurophysiol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568480

RESUMO

BACKGROUND: Stimuli that potentially require a rapid defensive or avoidance action can appear from the periphery at any time in natural environments. De Wit, Faseyitan, and Coslett (2020) recently reported novel evidence suggestive of a fundamental neural mechanism that allows organisms to effectively deal with such situations. In the absence of any task, motor cortex excitability was found to be greater whenever gaze was directed away from either hand. OBJECTIVE/HYPOTHESIS: If modulation of cortical excitability as a function of gaze location is a fundamental principle of brain organization, then one would expect its operation to be present also outside of motor cortex, such as brain regions involved in perception. METHODS: To test this hypothesis, we applied single-pulse transcranial magnetic stimulation (TMS) to the right lateral occipital lobe while participants directed their eyes to the left, straight ahead, or to the right, and reported the presence or absence of a phosphene. No external stimuli were presented. RESULTS: Cortical excitability as reflected by phosphene threshold was greater with eyes deviated to the right as compared to the left. CONCLUSION: In conjunction with our previous findings of upregulation of motor cortex excitability when gaze and effector are not aligned, this eye position-driven increase in visual cortex excitability presumably serves to facilitate the detection of stimuli and subsequent readiness to act in non-foveated regions of space. The existence of this brain-wide mechanism has clear adaptive value given the unpredictable nature of natural environments in which human beings are situated and have evolved.

6.
J Neurophysiol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568510

RESUMO

At the heart of the prefrontal network is the mediodorsal thalamus (MD). Despite the importance of MD in a broad range of behaviors and neuropsychiatric disorders, little is known about the physiology of neurons in MD. We injected the retrograde tracer cholera toxin subunit B (CTB) into the medial prefrontal cortex (mPFC) of adult wildtype mice. We prepared acute brain slices and used current clamp electrophysiology to measure and compare the intrinsic properties of the neurons in MD that project to mPFC (MD→mPFC neurons). We found that MD→mPFC neurons are located predominantly in the medial (MD-M) and lateral (MD-L) subnuclei of MD. MD-L→mPFC neurons had shorter membrane time constants and lower membrane resistance than MD-M→mPFC neurons. Relatively increased Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) channel activity in MD-L neurons accounted for the difference in membrane resistance. MD-L neurons less readily generated action potentials compared to MD-M→mPFC neurons due to a higher rheobase. In both cell types, HCN channels supported generation of burst spiking. Increased HCN channel activity in MD-L neurons results in larger after-hyperpolarization potentials compared with MD-M neurons. These data, demonstrating that the two populations of MD→mPFC neurons have divergent physiologies, suggests a differential role in thalamocortical information processing and potentially behavior.

7.
Psychol Med ; : 1-11, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563302

RESUMO

BACKGROUND: Dysmyelination could be part of the pathophysiology of schizophrenia spectrum (SCZ) and bipolar disorders (BPD), yet few studies have examined myelination of the cerebral cortex. The ratio of T1- and T2-weighted magnetic resonance images (MRI) correlates with intracortical myelin. We investigated the T1w/T2w-ratio and its age trajectories in patients and healthy controls (CTR) and explored associations with antipsychotic medication use and psychotic symptoms. METHODS: Patients with SCZ (n = 64; mean age = 30.4 years, s.d. = 9.8), BPD (n = 91; mean age 31.0 years, s.d. = 10.2), and CTR (n = 155; mean age = 31.9 years, s.d. = 9.1) who participated in the TOP study (NORMENT, University of Oslo, Norway) were clinically assessed and scanned using a General Electric 3 T MRI system. T1w/T2w-ratio images were computed using an optimized pipeline with intensity normalization and field inhomogeneity correction. Vertex-wise regression models were used to compare groups and examine group × age interactions. In regions showing significant differences, we explored associations with antipsychotic medication use and psychotic symptoms. RESULTS: No main effect of diagnosis was found. However, age slopes of the T1w/T2w-ratio differed significantly between SCZ and CTR, predominantly in frontal and temporal lobe regions: Lower T1w/T2w-ratio values with higher age were found in CTR, but not in SCZ. Follow-up analyses revealed a more positive age slope in patients who were using antipsychotics and patients using higher chlorpromazine-equivalent doses. CONCLUSIONS: While we found no evidence of reduced intracortical myelin in SCZ or BPD relative to CTR, different regional age trajectories in SCZ may suggest a promyelinating effect of antipsychotic medication.

8.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559086

RESUMO

Turning on cue or stopping at a red light requires the detection of such cues to select action sequences, or suppress action, in accordance with cue-associated action rules. Cortico-striatal projections are an essential part of the brain's attention-motor interface. Here, we used glutamate-sensing microelectrode arrays to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic-DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns, and initiated such turns more slowly, than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In conjunction with turn cue-evoked glutamate spike levels, the presence of a single spike rendered GTs to be almost twice as likely to turn than STs. In contrast, multiple glutamate spikes predicted STs to be robustly more likely to turn than GTs. In GTs, inhibition of prelimbic-DMS projections attenuated turn rates and turn cue-evoked glutamate peaks and increased the number of spikes. These findings suggest that turn cue-evoked glutamate release dynamics in GTs are tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals is regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking.

9.
Elife ; 132024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568729

RESUMO

Primates rely on two eyes to perceive depth, while maintaining stable vision when either one eye or both eyes are open. Although psychophysical and modeling studies have investigated how monocular signals are combined to form binocular vision, the underlying neuronal mechanisms, particularly in V1 where most neurons exhibit binocularity with varying eye preferences, remain poorly understood. Here, we used two-photon calcium imaging to compare the monocular and binocular responses of thousands of simultaneously recorded V1 superficial-layer neurons in three awake macaques. During monocular stimulation, neurons preferring the stimulated eye exhibited significantly stronger responses compared to those preferring both eyes. However, during binocular stimulation, the responses of neurons preferring either eye were suppressed on the average, while those preferring both eyes were enhanced, resulting in similar neuronal responses irrespective of their eye preferences, and an overall response level similar to that with monocular viewing. A neuronally realistic model of binocular combination, which incorporates ocular dominance-dependent divisive interocular inhibition and binocular summation, is proposed to account for these findings.


Assuntos
Dominância Ocular , Olho , Animais , Visão Binocular , Macaca , Neurônios
10.
Heliyon ; 10(7): e28606, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571577

RESUMO

Hip fracture, increasing exponentially with age, is osteoporosis's most severe clinical consequence. Intertrochanteric fracture, one of the main types of hip fracture, is associated with higher mortality and morbidity. The current research hotspots lay in improving the treatment effect and optimizing the secondary stability after intertrochanteric fracture surgery. Cortex buttress reduction is a widely accepted method for treating intertrochanteric fracture by allowing the head-neck fragment to slide and rigidly contact the femoral shaft's cortex. Medial cortical support is considered a more effective option in treating young patients. However, osteo-degenerations features, including bone weakness and cortical thickness thinning, affect the performance of cortex support in geriatric intertrochanteric fracture treatment. Literature focusing on the age-specific difference in cortex performance in the fractured hip is scarce. We hypothesized that this osteo-19 degenerative feature affects the performance of cortex support in treating intertrochanteric fractures between the young and the elderly. We established twenty models for the old and the young with intertrochanteric fractures and performed static and dynamic simulations under one-legged stance and walking cycle conditions. The von Mises stress and displacement on the femur, proximal femoral nail anti-rotation (PFNA) implant, fracture plane, and the cutting volume of cancellous bone of the femur were compared. It was observed that defects in the anterior and posterior cortical bone walls significantly increase the stress on the PFNA implant, the displacement of the fracture surface, and cause a greater volume of cancellous bone to be resected. We concluded that ensuring the integrity and alignment of the anterior and posterior cortical bones is essential for elderly patients, and sagittal support is recommended. This finding suggests that the treatment method for intertrochanteric fracture may differ, considering the patient's age difference.

11.
Heliyon ; 10(7): e28548, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571649

RESUMO

Purpose: The hand motor cortex (HMC) is a reliable anatomical landmark for identifying the precentral gyrus. The current study aimed to investigate the morphology of HMC on axial MRI of glioma patients, propose a new morphological classification of HMC and analyze the effect of tumors on the morphology of HMC. Methods: A retrospective study of 276 adult right-handed glioma patients was conducted. The morphology of HMC was assessed using T2 axial images. Subsequently, the distribution of morphological subtypes was compared between the bilateral hemispheres and the tumor-affected and healthy hemispheres. Finally, the influence of tumor pathology on the morphology of HMC was investigated. Results: A new morphological classification of HMC with four subtypes (Ω, ε, Ω-ε and ε-Ω) was proposed. No significant difference was identified in the distribution of morphological subtypes between the bilateral hemispheres (p = 0.0901, Chi-square test), or between the tumor-affected and healthy hemispheres (p = 0.3507, Chi-square test), and the morphology of HMC between the bilateral hemispheres were consistent (p < 0.0001, Kappa test). In addition, a significant difference was identified in the distribution of morphological subtypes between astrocytic and oligodendroglial tumors (p = 0.0135, Chi-square test). Conclusion: In the current study, we proposed a new morphological classification of HMC, and found that tumor could affect the morphology of HMC in glioma patients. The results can help our clinical practice, enabling us to further understand the spatial structure of the cerebral hemispheres.

12.
Front Neurosci ; 18: 1363860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572150

RESUMO

Using theta burst stimulation (TBS) to induce neural plasticity has played an important role in improving the treatment of neurological disorders. However, the variability of TBS-induced synaptic plasticity in the primary motor cortex prevents its clinical application. Thus, factors associated with this variability should be explored to enable the creation of a predictive model. Statistical approaches, such as regression analysis, have been used to predict the effects of TBS. Machine learning may potentially uncover previously unexplored predictive factors due to its increased capacity for capturing nonlinear changes. In this study, we used our prior dataset (Katagiri et al., 2020) to determine the factors that predict variability in TBS-induced synaptic plasticity in the lower limb motor cortex for both intermittent (iTBS) and continuous (cTBS) TBS using machine learning. Validation of the created model showed an area under the curve (AUC) of 0.85 and 0.69 and positive predictive values of 77.7 and 70.0% for iTBS and cTBS, respectively; the negative predictive value was 75.5% for both patterns. Additionally, the accuracy was 0.76 and 0.72, precision was 0.82 and 0.67, recall was 0.82 and 0.67, and F1 scores were 0.82 and 0.67 for iTBS and cTBS, respectively. The most important predictor of iTBS was the motor evoked potential amplitude, whereas it was the intracortical facilitation for cTBS. Our results provide additional insights into the prediction of the effects of TBS variability according to baseline neurophysiological factors.

13.
Cell Rep ; 43(4): 113991, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38573855

RESUMO

The brain receives constant tactile input, but only a subset guides ongoing behavior. Actions associated with tactile stimuli thus endow them with behavioral relevance. It remains unclear how the relevance of tactile stimuli affects processing in the somatosensory (S1) cortex. We developed a cross-modal selection task in which head-fixed mice switched between responding to tactile stimuli in the presence of visual distractors or to visual stimuli in the presence of tactile distractors using licking movements to the left or right side in different blocks of trials. S1 spiking encoded tactile stimuli, licking actions, and direction of licking in response to tactile but not visual stimuli. Bidirectional optogenetic manipulations showed that sensory-motor activity in S1 guided behavior when touch but not vision was relevant. Our results show that S1 activity and its impact on behavior depend on the actions associated with a tactile stimulus.

14.
Eur J Neurosci ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576168

RESUMO

Dual tasks (DTs) combining walking with a cognitive task can cause various levels of cognitive-motor interference, depending on which brain resources are recruited in each case. However, the brain activation and functional connectivity underlying cognitive-motor interferences remain to be elucidated. Therefore, this study investigated the neural correlation during different DT conditions in 40 healthy young adults (mean age: 27.53 years, 28 women). The DTs included walking during subtraction or N-Back tasks. Cognitive-motor interference was calculated, and brain activation and functional connectivity were analysed. Portable functional near-infrared spectroscopy was utilized to monitor haemodynamics in the prefrontal cortex (PFC), motor cortex and parietal cortex during each task. Walking interference (decrease in walking speed during DT) was greater than cognitive interference (decrease in cognitive performance during DT), regardless of the type of task. Brain activation in the bilateral PFC and parietal cortex was greater for walking during subtraction than for standing subtraction. Furthermore, brain activation was higher in the bilateral motor and parietal and PFCs for walking during subtraction than for walking alone, but only increased in the PFC for walking during N-Back. Coherence between the bilateral lateral PFC and between the left lateral PFC and left motor cortex was significantly greater for walking during 2-Back than for walking. The PFC, a critical brain region for organizing cognitive and motor functions, played a crucial role in integrating information coming from multiple brain networks required for completing DTs. Therefore, the PFC could be a potential target for the modulation and improvement of cognitive-motor functions during neurorehabilitation.

15.
Neurosci Conscious ; 2024(1): niae015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595737

RESUMO

The neurobiology of conscious experience is one of the fundamental mysteries in science. New evidence suggests that transcranial magnetic stimulation of the parietal cortex does not modulate bistable perception. What does this mean for the neural correlates of consciousness, and how should we search for them?

16.
Oxf Open Neurosci ; 3: kvae002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595941

RESUMO

Working memory is a fundamental cognitive ability, allowing us to keep information in memory for the time needed to perform a given task. A complex neural circuit fulfills these functions, among which is the anterior cingulate cortex (CG). Functionally and anatomically connected to the medial prefrontal, retrosplenial, midcingulate and hippocampus, as well as motor cortices, CG has been implicated in retrieving appropriate information when needed to select and control appropriate behavior. The role of cingulate cortex in working memory-guided behaviors remains unclear due to the lack of studies reversibly interfering with its activity during specific epochs of working memory. We used eNpHR3.0 to silence cingulate neurons while animals perform a standard delayed non-match to trajectory task, and found that, while not causing an absolute impairment in working memory, silencing cingulate neurons during retrieval decreases the mean performance if compared to silencing during encoding. Such retrieval-associated changes are accompanied by longer delays observed when light is delivered to control animals, when compared to eNpHR3.0+ ones, consistent with an adaptive recruitment of additional cognitive resources.

17.
Cell Rep ; 43(4): 113986, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38598336

RESUMO

Layer 5 neurons of the neocortex receive their principal inputs from layer 2/3 neurons. We seek to identify the nature and extent of the plasticity of these projections with motor learning. Using optogenetic and viral intersectional tools to selectively stimulate distinct neuronal subsets in rat primary motor cortex, we simultaneously record from pairs of corticospinal neurons associated with distinct features of motor output control: distal forelimb vs. proximal forelimb. Activation of Channelrhodopsin2-expressing layer 2/3 afferents onto layer 5 in untrained animals produces greater monosynaptic excitation of neurons controlling the proximal forelimb. Following skilled grasp training, layer 2/3 inputs onto corticospinal neurons controlling the distal forelimb associated with skilled grasping become significantly stronger. Moreover, peak excitatory response amplitude nearly doubles while latency shortens, and excitatory-to-inhibitory latencies become significantly prolonged. These findings demonstrate distinct, highly segregated, and cell-specific plasticity of layer 2/3 projections during skilled grasp motor learning.

18.
Neuron ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38599213

RESUMO

Synchronous neuronal activity is a hallmark of the developing brain. In the mouse cerebral cortex, activity decorrelates during the second week of postnatal development, progressively acquiring the characteristic sparse pattern underlying the integration of sensory information. The maturation of inhibition seems critical for this process, but the interneurons involved in this crucial transition of network activity in the developing cortex remain unknown. Using in vivo longitudinal two-photon calcium imaging during the period that precedes the change from highly synchronous to decorrelated activity, we identify somatostatin-expressing (SST+) interneurons as critical modulators of this switch in mice. Modulation of the activity of SST+ cells accelerates or delays the decorrelation of cortical network activity, a process that involves regulating the maturation of parvalbumin-expressing (PV+) interneurons. SST+ cells critically link sensory inputs with local circuits, controlling the neural dynamics in the developing cortex while modulating the integration of other interneurons into nascent cortical circuits.

19.
J Comp Neurol ; 532(4): e25612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591638

RESUMO

Cellular-level anatomical data from early fetal brain are sparse yet critical to the understanding of neurodevelopmental disorders. We characterize the organization of the human cerebral cortex between 13 and 15 gestational weeks using high-resolution whole-brain histological data sets complimented with multimodal imaging. We observed the heretofore underrecognized, reproducible presence of infolds on the mesial surface of the cerebral hemispheres. Of note at this stage, when most of the cerebrum is occupied by lateral ventricles and the corpus callosum is incompletely developed, we postulate that these mesial infolds represent the primordial stage of cingulate, callosal, and calcarine sulci, features of mesial cortical development. Our observations are based on the multimodal approach and further include histological three-dimensional reconstruction that highlights the importance of the plane of sectioning. We describe the laminar organization of the developing cortical mantle, including these infolds from the marginal to ventricular zone, with Nissl, hematoxylin and eosin, and glial fibrillary acidic protein (GFAP) immunohistochemistry. Despite the absence of major sulci on the dorsal surface, the boundaries among the orbital, frontal, parietal, and occipital cortex were very well demarcated, primarily by the cytoarchitecture differences in the organization of the subplate (SP) and intermediate zone (IZ) in these locations. The parietal region has the thickest cortical plate (CP), SP, and IZ, whereas the orbital region shows the thinnest CP and reveals an extra cell-sparse layer above the bilaminar SP. The subcortical structures show intensely GFAP-immunolabeled soma, absent in the cerebral mantle. Our findings establish a normative neurodevelopment baseline at the early stage.


Assuntos
Encéfalo , Córtex Cerebral , Humanos , Corpo Caloso , Neurônios , Cabeça
20.
Eur Heart J ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38596850

RESUMO

BACKGROUND AND AIMS: Increasing data suggest that stress-related neural activity (SNA) is associated with subsequent major adverse cardiovascular events (MACE) and may represent a therapeutic target. Current evidence is exclusively based on populations from the U.S. and Asia where limited information about cardiovascular disease risk was available. This study sought to investigate whether SNA imaging has clinical value in a well-characterized cohort of cardiovascular patients in Europe. METHODS: In this single-centre study, a total of 963 patients (mean age 58.4 ± 16.1 years, 40.7% female) with known cardiovascular status, ranging from 'at-risk' to manifest disease, and without active cancer underwent 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography between 1 January 2005 and 31 August 2019. Stress-related neural activity was assessed with validated methods and relations between SNA and MACE (non-fatal stroke, non-fatal myocardial infarction, coronary revascularization, and cardiovascular death) or all-cause mortality by time-to-event analysis. RESULTS: Over a maximum follow-up of 17 years, 118 individuals (12.3%) experienced MACE, and 270 (28.0%) died. In univariate analyses, SNA significantly correlated with an increased risk of MACE (sub-distribution hazard ratio 1.52, 95% CI 1.05-2.19; P = .026) or death (hazard ratio 2.49, 95% CI 1.96-3.17; P < .001). In multivariable analyses, the association between SNA imaging and MACE was lost when details of the cardiovascular status were added to the models. Conversely, the relationship between SNA imaging and all-cause mortality persisted after multivariable adjustments. CONCLUSIONS: In a European patient cohort where cardiovascular status is known, SNA imaging is a robust and independent predictor of all-cause mortality, but its prognostic value for MACE is less evident. Further studies should define specific patient populations that might profit from SNA imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...